

Academia Romana

Depuneri de particule amorfe de dioxid de titan pe materiale textile

<u>L. Frunza</u>, I. Zgura, M. Enculescu, C. Florica, V.F. Cotorobai, C.P. Ganea, L. Diamandescu, S. Frunza

Institutul National de Cercetare Dezvoltare pentru Fizica Materialelor Magurele

Cuprins si bibliografie

Introducere Experimental - probe - functionalizare - caracterizare (clasica) - proprietati de udare - hidrofilicitate indusa - proprietati fotocatalitice Rezultate - depunere amorfa - interactione particula-suport textil - verificarea aderentei - proprietati de udare - hidrofilicitate indusa - proprietati fotocatalitice Concluzii

1. I. Zgura, S. Frunza, L. Frunza, M. Enculescu, C. Florica, C.P. Ganea, C.C. Negrila, L. Diamandescu, *Titanium dioxide layer deposited at low temperature upon polyester fabrics*, J. Optoelectron. Adv. Mater., in evaluare 2014.

2. I. Zgura, S. Frunza, L. Frunza, M. Enculescu, C. Florica, V.F. Cotorobai, C.P. Ganea, Polyester fabrics covered with amorphous titanium dioxide layers: combining wettability measurements and photoinduced hydrophylicity to asses their surface properties, Rom. Rep. Phys. accepted 2015.

3. I. Zgura, S. Frunza, M. Enculescu, C. Florica, F. Cotorobai, Deposition of Titanium Dioxide Layers upon Polyester Textile Materials: Checking the Adherence by Ultra-Sonication, Rom. J. Phys., in press 2015.

Introducere

 ${\rm TiO_2}$ atat in volum cat si ca strat subtire, depus pe diferite materiale este folosit pentru proprietatile de:

- blocare a radiatiilor UV
- antibacteriene
- fotocatalitice

Acoperirea fibrelor cu TiO_2 se face prin metode diferite:

- sputtering
- ion beam evaporation
- plasma enhanced chemical vapor deposition
- sol-gel
- (dip-)pad-dry-cure
- impregnarea TiO_2 intr-o rasina si depunerea pe tesaturi etc

Fibrele din poliester (PES) au o rezistenta termica scazute -> metodele de acoperire folosesc o temperatura mai mica decat pentru fibrele naturale

Scopul lucrarii este de a testa si caracteriza depunerea de Ti O_2 pe suprafata tesaturilor din fibre PES

Experimental 1

Functionalizare

#Sputtering (SP) cu o instalatie Sputter-Coater (Tectra GmbH) cu tinta TiO2 (99.9% oxid, K.J. Lesker), timp de 6 h. Presiune:

- 4×102 Pa
- 8.6x102 Pa (cele mai multe probe)
- 4×103 Pa

#Sol-gel (SG) prin introducerea tesaturilor intr-un sol de TiO2 cu o viteza de 10
mm/min. Precursor : tetraisopropoxide (TIP) (Sigma Aldrich) in alcool eticlic + ac.
Acetic + HCl
#Testarea aderentei cu ultrasunete

Experimental 2

Caracterizare	 •X-ray diffraction (XRD) cu echipament D8 Advance (Bruker-AXS); radiatie CuKα •X-ray photoelectron spectroscopy (XPS) cu spectrofotometru de electroni SPECS, analizor Phoibos 150, sursa XR-50M cu anod monocromatic de Al. Compensator de sarcina: FG15/40. Program: Spectral Data Processor 2.3 •Scanning Electron Microscopy (SEM) pcu un instrument Zeiss Evo 50 XVP •Analiza termogravimetrica (TG) cu aparat Diamond TG-DTA (Perkin Elmer) pana la 1050 K, cu viteza 10 Kmin-1. •Fourier Transform Infrared Spectroscopy (FTIR) in modul ATR cu un aparat Spectrum BX II (Perkin Elmer) • Optical microscopy (OM)
Proprietati de udare	Masurarea unghiului de contact Drop Shape Analysis System DSA100 Test liquid: water
Hidrofilicitate indusa Iluminare/intuneric	Simulator solar AM 1.5G (Lot Oriel) cu iesire colimata; 210 min Lampa LS150-Xe free ozone (Lot Oriel) Cutie neagra
Proprietati fotocatalitice	Photocatalysis Evaluation Checker model PCC2 (ULVAC RIKO Inc.) Albastru de metilen (MB) colorant care se degradeaza: intensitatea luminii pulsate la 610 nm, reflectate de suprafata acoperita cu MB timp de 60 min.

Rezultate: particulele TiO2 sunt amorfe

TiO2 depus prin SG (open up triangles). TiO2 cristalin: A-anatase, R-rutile, B-brookite

 \rightarrow Formarea de particule care nu se disting separat

Rezultate: interactia particule-suport

Incarcarea probelor cu TiO2 este destul de mica, ca. 1-2 % Variatia de temperatura este similara pe toate probele PES

Apa adsorbita fizic are o importanta mica pentru cracterizarea probelor

Curbele asimetrice DTG arata prezenta mai multor specii legate la suprafata care conduc la intensitati diferite pentru procesele de descompunere

Curbe TG (a), DTG (b) si Heat Flow (c) pentru probe PES2 :

- Forma originala (up triangles),
- acoperite cu TiO₂ prin SG (squares)
- acoperite prin SP la 8.6x10² Pa (circles) [1].

Rezultate: exista o interactie particule-suport

Rezultate: testarea aderentei stratului depus

Cu tratament

Imaginile SEM dupa sonicare timp de 3 min [3] au indicat ca fibrele depuse sunt similare cu cele nedepuse [3]

\rightarrow stratul este foarte aderent.

Fara tratament

Cresterea duratei tratamentului cu ultrasunete la 1 ora [3] nu desprinde stratul depus dar distruge stratul intre fibre.

Rezultate: proprietati de udare

Picaturi de apa in contact cu suprafata probelor [2]: a) $TiO_2SG/PES2$ (169.3/169.3); b) $TiO_2SP8.6/PES2$ (133.2/134.4) Se observa firisoare mici ale materialului textil

		Ec. Cassie-Baxter
Sample	CA /degree	$f = \frac{1 + \cos\theta_c}{1 + \cos\theta_0} *$
PES2	136.9	0.24457
PES3	138.1	0.23188
PES28	152.1	0.10598
PES30	124.8	0.38949
PLA	129.6	0.3288
TiO ₂ SG/PES2	169.3	0.01782
TiO ₂ SG/PES3	169.7	0.01683
TiO ₂ SG/PES28	152.7	0.11089
TiO ₂ SG/PES30	158.9	0.06733
TiO ₂ SG/PLA	140.6	0.22574
TiO ₂ SP4/PES2	133.8	0.20981
TiO ₂ SP4/PES3	166.0	0.02044
TiO ₂ SP4/PES28	Hydrophylic	0.6812
TiO ₂ SP4/PES30	155.8	0.05995
TiO ₂ SP4/PLA	150.3	0.08992

* θ = 84° pentru probele originale, 89.4° pentru cele depuse SG si 62.1° pentru cele depuse SP.

Materialele originale sunt hidrofobe (CA > 90), fata de polimerii de acelasi fel extrudati, care au CA= 84 . \rightarrow Tesaturile au CA mai mare formate intre aer, apa si suprafata tesaturii, cu nanorugozitate. Unele probe au CA > 150, sunt superhidrofobe. O proba lasa sa treaca apa prin ea, imediat, ceea ce se explica prin ochiurile mari dar si prin faptul ca depunerea de particule hidrofile determina margini hidrofile. Proba PLA e superhidrofoba.

→ Masuratorile de CA sunt folosite pentru o prima evaluare a morfologiei acoperirii.

Rezultate: proprietati de udare si hidrofilicitate indusa

Hidrofilicitatea indusa este un efect acum binecunoscut care se observa pentru film sau cristale de TiO2.

Ca rezultat al iluminarii, CA ~ 0 Lumina induce inversarea proprietatilor hidrofile prin depozitarea probei in intuneric.

Dupa iradiere 210 min:

CA _{irr}	
degree	•
54.8	
43.0	
Iydrophilic	
17.7	
Iydrophilic	
Iydrophilic	
55.7	
31.1	
	2A _{irr} degree 54.8 43.0 Iydrophilic 17.7 Iydrophilic Iydrophilic 55.7 31.1

Filmele SG au hidrofilicitate mai mica dupa iluminare, decat cele SP. De ex, pentru proba TiO2SP4/PES2, scade la 0, dar creste cu 180 pentru TiO2SP40/PES2.

Descresterea CA vs. timp la iradiere UV pentru: $TiO_2SG/PES2$ (squares); $TiO_2SP8.6/PES2$ (circles); TiO_2SG/PLA (up triangles); $TiO_2SP8.6/PLA$ (down triangles) [2].

Rezultate: activitate fotocatalitica

Activitatea catalitica a compozitelor e mult mai mare (2-7 ori) decat aceea a tesaturii originale

Aceasta crestere ar putea fi atribuita transferuui de sarcina de la tesatura la particula TiO2 si la separarea eficienta a perechii gaura-electron ca si in cazuri similare

Modificarea absorbantei MB functie de timpul de iradiere pentru probele [1]:

- TiO2SG/PES30 fabric (open squares)
- PES30 originala (open up triangles).

Concluzii

•Depunerea de TiO2 pe material textile din PES a reusit, la temperatura joasa prin doua metode

- •S-au gasit conditiile depunerii aderente
- •Particulele de TiO2 depuse sunt amorfe
- •Particulele adera foarte bine la suprafata tesaturii
- •Particulele modifica proprietatile de udare
- •Materialele functionalizate prezinta proprietati fotocatalitice

Fiecare din aceste fapte constituie puncte de plecare pentru noi cercetari.

Multumiri

Pentru suportul financiar al proiectului ID 281/2011, UEFISCDI

Dr. A. Dorogan (National Institute for Textile & Leather, Bucharest) pentru unele probe de materiale textile

Dr. G. Socol (National Institute for Lasers, Magurele) pentru experientele de iluminare/intuneric

Dr. C.C. Negrila (INCDFM) pentru experientele XPS

Tuturor celor prezenti, pentru atentie!